翻訳と辞書
Words near each other
・ Min-hee
・ Min-ho
・ Min-hyuk
・ Min-jae
・ Min-ji
・ Min-ju
・ Min-jun
・ Min-jung (name)
・ Min-ki
・ Min-Kush
・ Min-Kush Valley
・ Min-kyu
・ Min-kyung
・ Min-Liang Tan
・ Min-max heap
Min-max theorem
・ Min-plus matrix multiplication
・ Min-seo
・ Min-seok
・ Min-Sheng General Hospital
・ Min-soo
・ Min-sun
・ Min-woo
・ Min-young
・ Min/max kd-tree
・ Mina
・ Mina (1964 album)
・ Mina (1971 album)
・ Mina (drum)
・ Mina (German singer)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Min-max theorem : ウィキペディア英語版
Min-max theorem

In linear algebra and functional analysis, the min-max theorem, or variational theorem, or Courant–Fischer–Weyl min-max principle, is a result that gives a variational characterization of eigenvalues of compact Hermitian operators on Hilbert spaces. It can be viewed as the starting point of many results of similar nature.
This article first discusses the finite-dimensional case and its applications before considering compact operators on infinite-dimensional Hilbert spaces. We will see that for compact operators, the proof of the main theorem uses essentially the same idea from the finite-dimensional argument.
In the case that the operator is non-Hermitian, the theorem provides an equivalent characterization of the associated singular values. The min-max theorem can be extended to self-adjoint operators that are bounded below.
== Matrices ==
Let be a Hermitian matrix. As with many other variational results on eigenvalues, one considers the Rayleigh–Ritz quotient defined by
:R_A(x) = \frac
where denotes the Euclidean inner product on . Clearly, the Rayleigh quotient of an eigenvector is its associated eigenvalue. Equivalently, the Rayleigh–Ritz quotient can be replaced by
:f(x) = (Ax, x), \; \|x\| = 1.
For Hermitian matrices, the range of the continuous function ''RA''(''x''), or ''f''(''x''), is a compact subset (''b'' ) of the real line. The maximum ''b'' and the minimum ''a'' are the largest and smallest eigenvalue of ''A'', respectively. The min-max theorem is a refinement of this fact.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Min-max theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.